- 1. For each of the following functions find all possible antiderivatives. Write your answer as F(x).
 - (a) $f(x) = e^{-3x}$ (b) f(x) = 4x(c) $f(x) = x^9$ (d) $f(x) = 3x^5 + 1$ (e) $f(x) = \sqrt{e^x}$ (f) f(x) = 7/x(g) $f(x) = 8\sqrt[3]{x}$ (h) $f(x) = \frac{7}{e^{2x}}$ (i) $f(x) = 2/\sqrt{x} + 2\sqrt{x}$
- 2. Sketch the graphs for two possible antiderivatives for the function $f(x) = e^x$.
- 3. Sketch the graphs for two possible antiderivatives for the function f(x) = 1/x.
- 4. Sketch the graphs for two possible antiderivatives for the function $f(x) = 3x^2$.
- 5. For each of the following functions f(x) find all possible antiderivatives F(x) satisfying the following property:
 - (a) $f(x) = x^2 + \sqrt{x}$ and F(1) = 3
 - (b) f(x) = 2x + 1 and F(0) = 5
 - (c) $f(x) = e^{7x}$ and F(0) = 10
- 6. Compute the following indefinite:
 - (a) $\int 7(x^2/3 + 3x) dx$ (b) $\int \frac{1}{e^x} dx$ (c) $\int \frac{x^3}{3} + \frac{3}{x^3} + \frac{3}{x} dx$ (d) $\int \frac{3x - 2x^3 + 4x^5}{4x^7} dx$
- 7. Use Substitution to compute the following indefinite integrals:
 - (a) $\int 2(2x-1)^7 dx$ (d) $\int x^4/(x^5+11)dx$ (b) $(e) \int (x^2+2x+3)^8(x+1)dx$ (e) $\int e^{-x^2}2xdx$ (c) $(f) \int \frac{\sqrt{\ln(x)}}{x}dx$ $\int \frac{3x^2+1}{\sqrt[5]{x^3+x+10}}dx$

(a)

- 8. Compute the following definite integrals.
 - (b) $\int_{-2}^{2} x^{5} + x^{3} + x dx \qquad \qquad \int_{-2}^{2} x^{2} + 1 dx$
- 9. The velocity at time t of a ball thrown up into the air is v(t) = -32t + 74 feet per second.
 - (a) Compute the displacement of the ball over the time interval $0 \le t \le 3$.
 - (b) Given that the initial height of the ball is 6 feet determine its position at t = 3.
- 10. A sample of radioactive material has decay constant .1, and is decaying at a *rate* of $R(t) = -e^{-.1t}$ grams per year. How many grams of the material decayed after the first 10 years? (*Hint*: Let M(t) be the mass of the material after t years. We want to compute the difference M(10) M(0).)
- 11. Consider the function $f(x) = 1 x^2$ on the interval [-1, 1].
 - (a) Compute the Riemann Sum for f(x) using n = 3 rectangles and right endpoints. You may leave your answer as a summation. (*Hint: Draw a picture!*)
 - (b) Compute the Riemann Sum for f(x) using n = 3 rectangles and left endpoints. You may leave your answer as a summation. (*Hint: Draw a picture!*)
- 12. Consider the function $f(x) = x^3$. Suppose that you wanted to compute the Riemann sum of f(x) on the interval [0,3] with n = 10 rectangles.
 - (a) What is the area of the leftmost rectangle in the sum, if you used right endpoints?
 - (b) What is the area of the leftmost rectangle in the sum, if you used left endpoints?
- 13. For each of the following functions f(x), find the area bounded between the graph of f(x) and the x-axis.
 - (a) $f(x) = x(x^2 1)$ on the interval [-1, 1].
 - (b) $f(x) = x^2 2x 3$ on the interval from [-2, 4]
 - (c) $f(x) = x^2 4$ on the interval from [-3, 3]