LINEAR FUNCTIONS, TANGENT LINES AND PRACTICE PROBLEMS

MA 131-006

We're interested in know: As you vary the x-values that you plug into a function, how do the y-values change? What is the rate of this change? If you vary x a little, with y change by just a little or by a lot?

- Review the solution to number 3
- Derivatives
 - Reminder the *derivative* of the function y = f(x) at the point x_0 is the slope of the tangent line at x_0 .
 - Activity-measuring speed at an instant.
 - Example: The slope of the tangent line for $y = x^2$ is given by the following rule: $x \mapsto 2x$. For example, the slope of the tangent line at x = 1 is 2×1 ; the slope of the tangent line at x = 2 is 4.
 - For each of the following points, sketch the tangent line to $y = x^2$ and write down its equation.
 - $* \ x = 0$
 - * x = 1
 - * x = -2
 - * x = 2.
 - A rule like this that determines the derivative at each point is called the *derivative* of y = f(x), and it is a function in its own right. We denote this function by f'(x) or simply f' or y'.
 - Power rule!
 - * Compute the derivative of the following functions, and then write the equation for the tangent line at the point x = 1.
 - $f(x) = x^{8}$ $f(x) = \sqrt{x}$ $f(x) = x^{-3}$
 - $\cdot y = \sqrt[7]{x}$

- We calculate the derivative using secant lines and a limit.

* Difference quotient: y = x and $y = x^2$.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC, USA