LINEAR FUNCTIONS, TANGENT LINES AND PRACTICE PROBLEMS

MA 131-006

We're interested in know: As you vary the x-values that you plug into a function, how do the y-values change? What is the rate of this change? If you vary x a little, with y change by just a little or by a lot?

- Review the solution to number 3
- Derivatives
- Reminder the derivative of the function $y=f(x)$ at the point x_{0} is the slope of the tangent line at x_{0}.
- Activity-measuring speed at an instant.
- Example: The slope of the tangent line for $y=x^{2}$ is given by the following rule: $x \mapsto 2 x$. For example, the slope of the tangent line at $x=1$ is 2×1; the slope of the tangent line at $x=2$ is 4 .
- For each of the following points, sketch the tangent line to $y=x^{2}$ and write down its equation.
* $x=0$
* $x=1$
* $x=-2$
* $x=2$.
- A rule like this that determines the derivative at each point is called the derivative of $y=f(x)$, and it is a function in its own right. We denote this function by $f^{\prime}(x)$ or simply f^{\prime} or y^{\prime}.
- Power rule!
* Compute the derivative of the following functions, and then write the equation for the tangent line at the point $x=1$.

$$
\begin{aligned}
& \cdot f(x)=x^{8} \\
& \cdot f(x)=\sqrt{x} \\
& \cdot f(x)=x^{-3} \\
& \cdot y=\sqrt[7]{x}
\end{aligned}
$$

- We calculate the derivative using secant lines and a limit.
* Difference quotient: $y=x$ and $y=x^{2}$.

